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The hydrodynamic pressures acting on the surface of a rigid dam during earthquakes 
are examined both analytically and numerically by a two-dimensional potential-flow 
theory. Analytical solutions are obtained for the cases where the inclined upstream 
dam face has a constant slope and the reservoir has a triangular shape. A general 
numerical scheme via an integral-equation formulation is also presented for complex 
geometries. Analytical and numerical solutions are compared with experimental data 
(Zangar 1953) with good agreement. 

1. Introduction 
Earthquake-induced hydrodynamic pressures on the upstream face of a dam are 

important factors in design considerations. Assuming that the fluid is incompressible, 
Westergaard (1933) wm first to derive an expression for the hydrodynamic pressure 
acting on a rigid dam with a vertical upstream face as a result of horizontal harmonic 
ground motion. In  the last fifty years, many researchers have extended Westergaard’s 
classical work to include more physical parameters such as the compressibility of the 
fluid in the reservoir (e.g. Chopra 1967 ; Rashed & Iwan 1984), the flexibility of the 
dam (e.g. Finn & Varoglu 1973; Mei, Foda & Tong 1979), and reservoir bottom 
absorption (e.g. Fenves & Chopra 1983, 1985). Although there are many numerical 
models (e.g. Hall & Chopra 1982; Rashed 1982; Liu & Cheng 1984; Yeh & Ho 1984) 
that can be used for dam-reservoir-interaction problems with complex two- and 
three-dimensional geometries, analytical solutions are rare and are available only for 
a reservoir with a simple geometry. 

Using a two-dimensional potential-flow theory, Chwang (1978) presented an 
analytical solution for the hydrodynamic pressure on an accelerating dam. The 
duration of the dam acceleration is short enough that the compressibility of the fluid 
can be ignored. The reservoir was assumed to have a constant depth and extend to 
infinity and the upstream dam face to have a constant slope. In  a companion paper, 
Chwang & Housner (1978) solved the same problem approximately by the momentum- 
balance principle, which was first introduced by von Karman (1933). Chwang (1979) 
extended the theory to a finite reservoir of triangular shape. The upstream dam face 
was assumed to be vertical. The effects of stratification in reservoirs on the 
hydrodynamic pressure were considered in Chwang (1 981). These analytical solutions 
are of value in reaching a qualitative understanding of the hydrodynamic pressures 
on the dam. 

The objectives of this paper are twofold. First, an analytical solution for the 
earthquake-acceleration-induced hydrodynamic pressure on a rigid sloping dam with 
a reservoir of triangular shape is presented. Both vertical and horizontal ground 
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motions are considered in the solution. Chwang’s (1978, 1979) solutions become 
limiting cases of the present solution. Zangar’s (1953) experimental data agree very 
well with analytical solutions for a reservoir of constant depth. The second objective 
of this paper is to present a numerical scheme to solve problems with complex 
geometries. The boundary-integral-equation methodis chosen, since only the boundary 
information, i.e. hydrodynamic pressure on the dam face, is of interest. Numerical 
solutions are compared with Zangar’s (1953) experimental results for several different 
geometries of dam face. 

2. Theoretical formulation 
Consider a rigid dam with an upstream face of an arbitrary shape (rd in figure 1) .  

The origin of the coordinates is located at the base of the dam and the free surface 
is represented by y = h. As shown in figure 1, the bottom of the reservoir is denoted 
as rb. The dam-and-reservoir system is assumed to undergo a constant acceleration 
a, in the direction making an angle y with the x-axis. Assuming that the fluid in the 
reservoir is incompressible and inviscid, the hydrodynamic pressure P satisfies the 

(1)  
Laplace equation V2P = 0. 

If the duration of the acceleration is sufficiently short, the free-surface perturbation 
is small and negligible. The only free-surface boundary condition is to require that 
the dynamic pressure vanish. Thus 

P = O  ( y = h ) .  (2) 

Along the upstream dam face and the reservoir bottom the normal derivations of the 
dynamic pressure are prescribed : 

- = -pa*nd on rd; ap 

and 

- = -paan, on rb; 8P 

an, 

(3) 

(4) 

where a = (a, cosy, a, sin y ) ,  and nd and n b  are the unit outward normals along the 
dam surface and the reservoir respectively. In the case where the water depth is a 
constant, the reservoir becomes a semi-infinitely long channel. The hydrodynamic 
pressure vanishes as x + 00 . 

3. An analytical solution 
3.1. Analysis 

An analytical solution for the general dam-reservoir system described in the previous 
section is obtained for a problem with a simple geometry. As depicted in figure 2, 
the upstream dam face is assumed to be a straight line, 

y = -x tanax on r,. ( 5 )  

y = x tan@ on r b ,  (6) 

The reservoir bottom is also a straight line and is described as 

where 0 < a < ?j and 0 < 
and the reservoir domain extends to infinity (x-t 00).  

< 4. When p = 0, the reservoir depth becomes a constant 
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A n  

FIQURE 1. Schematic diagram of a dam-reservoir system. 
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FIQURE 2. A simplified dam-reservoir system. The reservoir occupied by the water in the 
z-plane is mapped onto the upper half of the Qplane. 

The boundary conditions along the solid surfaces can be reduced from (3), (4), ( 5 )  
and ( 6 )  to 

- pa, sin (a + y )  x on r d ,  
ap 
an, 
ap 
an, 

-- 

- = pa, sin (P- y )  x on r,,. 

(7) 

Introducing the complex-conjugate function q with respect to P, we can construct 
an analytical function 

W(z)  = P+iq, z = z+iy. (9) 

From the Cauchy-Riemann condition aPpn = aq/as, the boundary conditions (7) 
and (8) can be rewritten as 

q = -pa,s sin(a+y)x on rd, (10) 

q = -pa,s"sin(p-y)x on r,, (11)  

where s measures the distance from the origin of a coordinate (point B in figure 2) 
to any point on the upstream dam face and s" represents the distance along the 
reservoir bottom measured from the origin. 
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Using the conformed mapping 

5 
Z =  K I  tO-1(t-l)6-1dt; a+@+&= 1 

1 

given by the Schwarz4hristoffel theory, we can transform the reservoir fluid region 
in the physical plane into the upper half of the [-plane (5  = <+ iy) (see figure 2). Points 
A and B are mapped into y = 0 and 1 respectively. Point C is mapped into points 
at infinity in the [-plane along the negative and positive axes. The complex constant 
K in (12) determines the scale and the orientation of the triangle ABC in the z-plane 
and is given as 

where r( ) is the gamma function. 
From (2), (9), (10) and ( l l ) ,  along the real axis in the [-plane, we have 

ReW([)=O ( - 0 0 < < < 0 ) ,  

where s and s' are given in (12) as 

and 

Note that K 

if we introduce an auxiliary function 

is a real constant. 
Equations (14), (15) and (16) are mixed boundary conditions for W([) .  However, 

H ( 5 )  = 5-+ WC), (19) 

where the positive branch is taken for the square-root function, the boundary 
conditions become 

(-a<<<<), (20) 

ImH(5) = -pu,$-?s(<) s in(a+y)n  (0 < 6 < I ) ,  (21) 

(22) r" -pa,<-is'(f) sin(@--y)n (1  < < <  00).  

Using the Riemann-Hilbert theorem (e.g. Carrier, Krook & Pearson 1966), we can 
express the analytic function H ( 5 )  in the upper-half [-plane as 

Substitutions of (20), (21) and (22) into (23) yield 
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The hydrodynamic pressure on the upstream dam face is the real part of W(5)  for 
0 < 5 < 1. Using (17) and (18) in (24) and integrating by parts, we have 

where denotes the Cauchy principal value. For computational purposes the above 
equation can be expressed in a different form. Differentiating (25) with respect to 6, 
we obtain 

The integrals on the right-hand side of (26) can be obtained by contour integrations 
(see Appendix). Thus 

tp dt -- 
(1 + t)'-b tqt  + 6) 

[sin (a + y )  x cos px + sin (p - y )  x cos ax] 
sin [ ( a + p ) x ]  

x[sin (a + y )  x cos (a +p)  x + sin (p- y )  x] 
sin (a+p) 7c 

- 

Integrating (27), we have 

4[sin(a+y)x cospn+sin ( P - y ) x  cosax] 
sin [(a + p) x] 

sin (a+ y )  x cos (a+p) 7c + sin (P- y )  x 
sin (a + p) x - Pa, 

We remark here that the analytical solutions presented by Chwang (1978, 1979) are 
the special cases of (28) with p = y = 0 and a = respectively. 

3.2. Solutions and discussion 
Using (18) and (28), hydrodynamic pressures are only calculated for horizontal ground 
acceleration (i.e. y = 0"). The vertical ground acceleration simply modifies the 
gravitational acceleration. Therefore, the corresponding hydrodynamic pressure 
varies linearly in the vertical direction independently of the geometries of reservoir 
and dam (Chwang 1979). 

The hydrodynamic pressure distributions on the upstream dam face are plotted 
vs the vertical distance y/h for several bottom slopes px between 0" and 90" in 
figures 3-6. In each figure hydrodynamic pressures for several inclination angles ax 
are presented. When the water depth becomes a constant in the reservoir (pn = 0), the 
present theory reduces to Chwang's (1978) solution. Moreover, the hydrodynamic 
pressures for the vertical upstream dam face (an = 90") agree with Chwang's (1979) 
results. In figure 3 Zangar's (1953) laboratory data obtained by using an electrical 
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px  = 0" 
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FIQURE 3. The pressure distributions on the upstream dam face when the water depth is constant 
in the reservoir; -, present theory; ---, Zangar's (1953) experimental results. 

P l ~ o  h 

FIGURE 4. The pressure distributions on the upstream dam face for different bottom slopes. 

analogue are also plotted. The agreement between the theory and the experimental 
data is fairly good. The experimental data seem to underpredict the pressures near 
the bottom of the reservoir when the inclination angles are relatively small, i.e. 
an = 15" and 30". From figures 3-6 it  is clear that  the hydrodynamic pressure 
decreases as Px increases, whereas the pressure increases as an increases. Therefore, 
the pressure distribution for a7c = 90" (vertical upstream dam face) and P = 0" 
(constant water depth) is the maximum envelope of all pressure distributions. 
Regardless of the bottom slope of the reservoir, the maximum pressure always occurs 
at the base of the dam when the upstream dam face is vertical. For different angles 
of upstream dam-face inclination, maximum pressure occurs a t  some distance above 
the base of the dam. I n  fact, the theory shows that negative hydrodynamic pressure 
appears near the base of the dam when the inclination angle is relatively small and 
the bottom slope is relatively large. 
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FIGURE 5. The pressure distributions on the upstream dam face for different bottom slopes. 
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FIGURE 6. The pressure distributions on the upstream dam face for different bottom slopes. 

Chwang (1979) has pointed out the possibility of cavitation on the dam face when 
the dam is accelerating in the negative x-direction. The possibility of cavitation is 
enhanced if the dam is also accelerating in the negative y-direction. The locations 
of cavitation are usually very close to the top of the dam. In the present cases where 
the upstream dam surface is not vertical, the hydrodynamic pressure becomes 
negative near the toe of the dam (e.g. figures 5 and 6). Although the negative pressure 
is perhaps too small to cause cavitation by itself for a realistic earthquake intensity, 
a combination of vertical acceleration in the negative y-direction and horizontal 
acceleration in the positive x-direction could create cavitation near the toe of the dam 
face. 



138 P.  L.-F. Liu 

4. An integral-equation method 
4.1. Theoretical formulation 

The analytical solution presented in the previous section is limited to simple 
geometries where the slopes of the upstream face and the reservoir bottom are 
constants. For dam-reservoir systems with more complex geometries, solutions to 
the boundary-value problem described by (1)-(4) must be obtained by numerical 
means. Many numerical methods, such as the finite-element and the finite-differences 
methods, are readily available to solve the problem. However, since only the 
hydrodynamic pressures on the dam surface are of interest, an integral-equation 
method involving only the boundary variables would be more efficient. This method 
has been developed extensively in the literature (e.g. Liggett & Liu 1983). Only a brief 
outline of the method is given below. 

Referring to figure 1,  the boundary of the computational domain r consists of the 
free surface r,, the rigid bottom r b ,  and the upstream dam face r,. Applying the 
Green’s second identity to P and the free-space Green’s function of the Laplace 
equation G one can obtain the following integral equation: 

r = r, u r,, u rd, 
where a = 0 if (2, y) is outside of the computational domain and a = 1 if (z, y) is an 
interior point. But, when (2, y) is a boundary point, a takes the value of the interior 
angle of the boundary at that point divided by 2x. Hence, if the boundary is smooth, 
the interior angle is x and a is t .  The free-space Green’s function of the Laplace 
equation, corresponding to  a point source at (2, y), is given as 

G(x’, y‘; z, y) = In r ;  T = [ ( ~ - z ’ ) ~ + ( y - y ’ ) ~ $ .  (30) 

If the source point (2, y) is located on the boundary, (29) is an integral equation 
which can be solved for missing information along the boundary. Substituting 
boundary conditions (2)-(4) into (29), we have 

The right-hand side of the above equation contains the known boundary conditions 
and the left-hand side involves the unknown P or aPlan along each segment of the 
boundary. Various methods for discretizing the above equation numerically have 
been reviewed in many papers (e.g. Liggett & Liu 1983) and will not be repeated here. 
Linear elements with linear interpolation functions for P and aP/an on each element 
are used in this paper. 

When the horizontal dimension of the reservoir is much larger than the water depth, 
the computational domain must be truncated and a fictitious boundary should be 
inserted at some distance away from the dam so that the hydrodynamic pressures 
are indeed negligible along the fictitious boundary. Therefore, the location of the 
fictitious boundary is determined, to a large extent, by the trial-and-error method. 
A more elegant hybrid technique similar to that developed by Mei, Foda & Tong 
(1979) is outlined in the following section. 

We consider a reservoir which extends to infinity (x+ 00) .  As shown in figure 7 ,  
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Y 

FIGURE 7 .  Schematic diagram of a dam-reservoir system with a fictitious boundary. 

the fictitious boundary is represented by BC (x = L) .  We assume that the water depth 
becomes a constant beyond the fictitious boundary. If only the horizontal ground 
acceleration is considered, the analytical solution in the region x > L can be readily 
expressed as 

m 
P = X A ,  cosk,(y-D) e-knz (z 2 L) ,  

n - i  

nn 
k, = (n = 1 ,  2, 3, ...), 

2(h-D) (33) 

where A ,  (n = 1, 2, 3, ...) are unknown constants. It is clear that (32) satisfies the 
Laplace equation and the boundary conditions including the zero-pressure condition 
at  infinity. The normal derivative of the pressure along the fictitious boundary can 
be obtained from (32) : 

m 

= - E A , k ,  coskn(y-D) e-knL. 
ap ap 
an ax , - 1  

- _ -  - (34) 

The integral equation for this problem remains the same as (29) with an additional 
integral over the fictitious boundary. Equations (32) and (34) are used in the 
integrand to replace P and aP/an by a set of unknown coefficients A,. The series in 
(32) and (34) must be truncated to have the same number of unknown coefficients 
as the number of nodal points on the fictitious boundary. 

4.2. Numerical solutions and discussion 
To demonstrate the applicability of the integral-equation method for problems with 
complex geometries, numerical solutions are obtained for several different shapes of 
dams as shown in figure 8. The reservoir has a constant depth and extends to infinity, 
x - t  00. Using an electrical analogue, Zangar (1953) obtained experimental data of 
hydrodynamic pressures on dam faces of the same geometries. 

In  our numerical computations, a fictitious boundary is located at x = L = 6h. A 
total of forty-three nodal points are used to discretize the entire boundary. These 
nodal points are more or less evenly distributed. Only two terms in the series of (32) 
and (34) are used in the computations. 

Numerical solutions as well as Zangar's experimental data are plotted in figure 9. 
Our numerical solutions for the vertical-dam case (B5; an = 90") and the constant- 
slope case (Bl ;  an = 60°) agree almost perfectly with the analytical solutions 
presented in $3. The slight differences between Zangar's data and the theoretical 
solution have been shown in figure 3. Agreement between numerical solutions and 
experimental data is also fairly good for other shapes of dams with the exception of 
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B2 

B 3  

B5 

FIGURE 8. Five different shapes for the upstream face of dam. 

the B3 case. In that case the vertical portion of the dam face extends to one-half of 
the water depth. Experimental data indicated larger hydrodynamic pressures than 
predicted by the theory. The hydrodynamic-pressure distribution for the vertical-dam 
case serves as an envelope (maximum bound) for all other pressure profiles. 

5. Concluding remarks 
Analytical solutions are obtained for the hydrodynamic pressure on an accelerating 

rigid dam. The reservoir is allowed to have a triangular shape. A numerical scheme 
via the integral-equation method is also developed to treat problems with complex 
geometries. The theory is developed based on the simplifying assumption that the 
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FIQURE 9. The pressure distributions on the upstream face of dam for the shapes shown in 
figure 8; -, present theory; ---, Zangar's (1953) data. 

compressibility of water can be neglected. This assumption is valid as long as the 
fluid-particle velocity in the reservoir V, is small in comparison with the speed of sound 
in the water, V,. The ground acceleration a,, during a typical earthquake ranges from 
0.lg to l.Og, and the period of the ground excitation T varies from 0.1 s to 10 s. The 
ratio V,/V, ranges from lo-' to 

It is found that, regardless of the bottom slope of the reservoir, the maximum 
pressure always occurs at  the base of the dam when the upstream dam face is vertical. 
Moreover, the negative hydrodynamic pressure appears near the toe of the dam when 
the inclination angle is small and the bottom slope is large. The appearance of the 
negative pressure could create cavitations. 

This research was supported, in part, by a research grant, sponsored by the 
National Science Foundation (CEE-7902803 A04), to Cornell University. Discussions 
with Dr Allen T.Chwang have been most useful. His effort and time are much 
appreciated. 

Appendix. Contour integrations for (26) 
Let is denote the integrals on the right-hand side of (26) by 

Il = /1F-1(l-t)8-1-dt, ti 
0 t - E  

The integrands in 1, and I ,  have three branch points in the complex t-plane, t = 0, + 1 
and 00. Both integrals can be integrated by contour integrations. 

The contour and branch cuts for Il are shown in figure 10. The phase oft and ( t -  1) 
is between -n and n. There is a simple pole at t = 6. The contour integral is composed 
of the following integrals : 
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FIGURE 10. Contours and branch cuts for I ,  (A 1). 

where C ,  is a circle of large radius R and C, represents a small circ,,: of radius 6 centred 
at t = 1. The integral around C, vanishes as R approaches infinity, as does that 
around C, as E + O .  The remaining integrals can be written as 

0 Itla-11 1-tIa-1 ei(a+a--$)nItli&ndt 
p-l(t- 1)8-1- dt = 

t-f s, t-E 

The contour integral is equal to  the residue at the simple pole t = 6, which can be 
evaluated as 

( 1 - - 8 @ * 
= 2ni cos[(a+p)x] 
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Thus 

FIGURE 11.  Contours and branch cuts for I ,  (A 2). 

ti 
P-l(t- 1)8-1 - dt = Res (t  = 6). I, t - 5  

Substituting (A 3)-(A 7) into the above equation, we obtain 

dt -- dt 

For I, in (A 2), the contour and the branch cuts are shown in figure 11. The phase 
oft  is between --A and -A, but the range of the phase of (t- 1) is from 0 to 2x. The 
contour integral becomes 

ti 

t-5 I,, + I, + s, + so_m + s, O0 + I:, + r Jc P-l(t- 1)8-1 - dt = 

where CEO and CE, denote small circles with radius eo and el centred at t = 0 and 1 
respectively (see figure 11). Once again, the integral around the large circle C, 
vanishes as R -+ 00. The integrals around CEO and Ce, also become zero as c0 and el + 0. 
Using the proper phase of t and (t - l) ,  we find the remaining integrals in the above 
equation to be expressed as 

o I t l a - l l t -1  16-1 ein(a+8-2)~t~iei i r r  
d t = J  dt 

-m t-E 

O 0 P  dt s ( l + t ) + d i q i q j ’  
- - -i e-i(p+i)x 



" O P  dt 
( 1  +t)'-a qixg ' 

dt 

- i &(B-u)n _ -  

"O p-yt- 1)"lti " O F  s1 t -5  d t = J  ( t - 1 ) 1 - 8 t f ( t - 5 ) '  

The residue of the contour integral is contributed by the simple pole at t = 5, 
Reg (t  = 5) = 27ci e-1 (4 I 5- 1 18-1 e'(8-1)x 

(A 13) =--xi e-1(1-[)8-1(4eb%C. 

Applying the residue theorem with (A 9)-(A 13) we obtain 
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